Properties

Label 382360.j
Number of curves $4$
Conductor $382360$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("j1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 382360.j have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(5\)\(1 - T\)
\(11\)\(1\)
\(79\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(3\) \( 1 + 3 T^{2}\) 1.3.a
\(7\) \( 1 + 7 T^{2}\) 1.7.a
\(13\) \( 1 - 2 T + 13 T^{2}\) 1.13.ac
\(17\) \( 1 - 6 T + 17 T^{2}\) 1.17.ag
\(19\) \( 1 + 4 T + 19 T^{2}\) 1.19.e
\(23\) \( 1 - 8 T + 23 T^{2}\) 1.23.ai
\(29\) \( 1 - 6 T + 29 T^{2}\) 1.29.ag
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 382360.j do not have complex multiplication.

Modular form 382360.2.a.j

Copy content sage:E.q_eigenform(10)
 
\(q + q^{5} - 3 q^{9} + 2 q^{13} + 6 q^{17} - 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 4 & 2 & 4 \\ 4 & 1 & 2 & 4 \\ 2 & 2 & 1 & 2 \\ 4 & 4 & 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 382360.j

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
382360.j1 382360j3 \([0, 0, 0, -15868787, 24310866734]\) \(121806044811730242/117823995025\) \(427483943834591283200\) \([2]\) \(16711680\) \(2.8797\)  
382360.j2 382360j4 \([0, 0, 0, -10786787, -13504972866]\) \(38257268424094242/423358789975\) \(1536012126877493196800\) \([2]\) \(16711680\) \(2.8797\)  
382360.j3 382360j2 \([0, 0, 0, -1227787, 185426934]\) \(112833156224484/57109050625\) \(103600298838298240000\) \([2, 2]\) \(8355840\) \(2.5331\)  
382360.j4 382360j1 \([0, 0, 0, 284713, 22379434]\) \(5627940902064/3733984375\) \(-1693435159900000000\) \([2]\) \(4177920\) \(2.1866\) \(\Gamma_0(N)\)-optimal