Properties

Label 382347.bm
Number of curves $1$
Conductor $382347$
CM no
Rank $0$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("bm1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 382347.bm1 has rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(3\)\(1\)
\(7\)\(1\)
\(17\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(2\) \( 1 + 2 T^{2}\) 1.2.a
\(5\) \( 1 + 2 T + 5 T^{2}\) 1.5.c
\(11\) \( 1 - 2 T + 11 T^{2}\) 1.11.ac
\(13\) \( 1 - 2 T + 13 T^{2}\) 1.13.ac
\(19\) \( 1 + T + 19 T^{2}\) 1.19.b
\(23\) \( 1 - 4 T + 23 T^{2}\) 1.23.ae
\(29\) \( 1 + 29 T^{2}\) 1.29.a
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 382347.bm do not have complex multiplication.

Modular form 382347.2.a.bm

Copy content sage:E.q_eigenform(10)
 
\(q - 2 q^{4} - 2 q^{5} + 2 q^{11} + 2 q^{13} + 4 q^{16} - q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 382347.bm

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
382347.bm1 382347bm1 \([0, 0, 1, -584766, 172118000]\) \(-3671556096/49\) \(-295131771593883\) \([]\) \(2363904\) \(1.9198\) \(\Gamma_0(N)\)-optimal