Show commands: SageMath
Rank
The elliptic curves in class 38080.z have rank \(1\).
L-function data
Bad L-factors: |
| ||||||||||||||||||||||||
Good L-factors: |
| ||||||||||||||||||||||||
See L-function page for more information |
Complex multiplication
The elliptic curves in class 38080.z do not have complex multiplication.Modular form 38080.2.a.z
Isogeny matrix
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rrrr} 1 & 4 & 2 & 4 \\ 4 & 1 & 2 & 4 \\ 2 & 2 & 1 & 2 \\ 4 & 4 & 2 & 1 \end{array}\right)\)
Isogeny graph
The vertices are labelled with LMFDB labels.
Elliptic curves in class 38080.z
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
38080.z1 | 38080q4 | \([0, 0, 0, -88387052, 319838755504]\) | \(291306206119284545407569/101150000000\) | \(26515865600000000\) | \([4]\) | \(2064384\) | \(2.9449\) | |
38080.z2 | 38080q3 | \([0, 0, 0, -6548972, 3014761136]\) | \(118495863754334673489/53596139570691200\) | \(14049906411619273932800\) | \([2]\) | \(2064384\) | \(2.9449\) | |
38080.z3 | 38080q2 | \([0, 0, 0, -5524972, 4995996336]\) | \(71149857462630609489/41907496960000\) | \(10985798883082240000\) | \([2, 2]\) | \(1032192\) | \(2.5983\) | |
38080.z4 | 38080q1 | \([0, 0, 0, -282092, 107535024]\) | \(-9470133471933009/13576123187200\) | \(-3558899236785356800\) | \([2]\) | \(516096\) | \(2.2518\) | \(\Gamma_0(N)\)-optimal |