Properties

Label 38080.z
Number of curves $4$
Conductor $38080$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("z1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 38080.z have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(5\)\(1 - T\)
\(7\)\(1 + T\)
\(17\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(3\) \( 1 + 3 T^{2}\) 1.3.a
\(11\) \( 1 - 4 T + 11 T^{2}\) 1.11.ae
\(13\) \( 1 + 2 T + 13 T^{2}\) 1.13.c
\(19\) \( 1 - 8 T + 19 T^{2}\) 1.19.ai
\(23\) \( 1 + 23 T^{2}\) 1.23.a
\(29\) \( 1 - 2 T + 29 T^{2}\) 1.29.ac
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 38080.z do not have complex multiplication.

Modular form 38080.2.a.z

Copy content sage:E.q_eigenform(10)
 
\(q + q^{5} - q^{7} - 3 q^{9} + 4 q^{11} - 2 q^{13} + q^{17} + 8 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 4 & 2 & 4 \\ 4 & 1 & 2 & 4 \\ 2 & 2 & 1 & 2 \\ 4 & 4 & 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 38080.z

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
38080.z1 38080q4 \([0, 0, 0, -88387052, 319838755504]\) \(291306206119284545407569/101150000000\) \(26515865600000000\) \([4]\) \(2064384\) \(2.9449\)  
38080.z2 38080q3 \([0, 0, 0, -6548972, 3014761136]\) \(118495863754334673489/53596139570691200\) \(14049906411619273932800\) \([2]\) \(2064384\) \(2.9449\)  
38080.z3 38080q2 \([0, 0, 0, -5524972, 4995996336]\) \(71149857462630609489/41907496960000\) \(10985798883082240000\) \([2, 2]\) \(1032192\) \(2.5983\)  
38080.z4 38080q1 \([0, 0, 0, -282092, 107535024]\) \(-9470133471933009/13576123187200\) \(-3558899236785356800\) \([2]\) \(516096\) \(2.2518\) \(\Gamma_0(N)\)-optimal