Properties

Label 38080.bc
Number of curves $4$
Conductor $38080$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("bc1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 38080.bc have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(5\)\(1 - T\)
\(7\)\(1 - T\)
\(17\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(3\) \( 1 + 3 T^{2}\) 1.3.a
\(11\) \( 1 + 4 T + 11 T^{2}\) 1.11.e
\(13\) \( 1 + 2 T + 13 T^{2}\) 1.13.c
\(19\) \( 1 + 8 T + 19 T^{2}\) 1.19.i
\(23\) \( 1 + 23 T^{2}\) 1.23.a
\(29\) \( 1 - 2 T + 29 T^{2}\) 1.29.ac
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 38080.bc do not have complex multiplication.

Modular form 38080.2.a.bc

Copy content sage:E.q_eigenform(10)
 
\(q + q^{5} + q^{7} - 3 q^{9} - 4 q^{11} - 2 q^{13} + q^{17} - 8 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 4 & 2 & 4 \\ 4 & 1 & 2 & 4 \\ 2 & 2 & 1 & 2 \\ 4 & 4 & 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 38080.bc

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
38080.bc1 38080br4 \([0, 0, 0, -88387052, -319838755504]\) \(291306206119284545407569/101150000000\) \(26515865600000000\) \([2]\) \(2064384\) \(2.9449\)  
38080.bc2 38080br3 \([0, 0, 0, -6548972, -3014761136]\) \(118495863754334673489/53596139570691200\) \(14049906411619273932800\) \([4]\) \(2064384\) \(2.9449\)  
38080.bc3 38080br2 \([0, 0, 0, -5524972, -4995996336]\) \(71149857462630609489/41907496960000\) \(10985798883082240000\) \([2, 2]\) \(1032192\) \(2.5983\)  
38080.bc4 38080br1 \([0, 0, 0, -282092, -107535024]\) \(-9470133471933009/13576123187200\) \(-3558899236785356800\) \([2]\) \(516096\) \(2.2518\) \(\Gamma_0(N)\)-optimal