Properties

Label 38025cp
Number of curves $2$
Conductor $38025$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("cp1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 38025cp have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(3\)\(1\)
\(5\)\(1\)
\(13\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(2\) \( 1 - T + 2 T^{2}\) 1.2.ab
\(7\) \( 1 - 2 T + 7 T^{2}\) 1.7.ac
\(11\) \( 1 - T + 11 T^{2}\) 1.11.ab
\(17\) \( 1 - 4 T + 17 T^{2}\) 1.17.ae
\(19\) \( 1 + 19 T^{2}\) 1.19.a
\(23\) \( 1 + 9 T + 23 T^{2}\) 1.23.j
\(29\) \( 1 + 2 T + 29 T^{2}\) 1.29.c
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 38025cp do not have complex multiplication.

Modular form 38025.2.a.cp

Copy content sage:E.q_eigenform(10)
 
\(q + 2 q^{2} + 2 q^{4} + 3 q^{7} + 2 q^{11} + 6 q^{14} - 4 q^{16} - 2 q^{17} + 5 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rr} 1 & 5 \\ 5 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.

Elliptic curves in class 38025cp

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
38025.dc1 38025cp1 \([0, 0, 1, -12675, 562981]\) \(-102400/3\) \(-6597644551875\) \([]\) \(112320\) \(1.2387\) \(\Gamma_0(N)\)-optimal
38025.dc2 38025cp2 \([0, 0, 1, 63375, -27119219]\) \(20480/243\) \(-334005755438671875\) \([]\) \(561600\) \(2.0434\)