Properties

Label 38025.n
Number of curves $4$
Conductor $38025$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("n1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 38025.n have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(3\)\(1\)
\(5\)\(1\)
\(13\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(2\) \( 1 + T + 2 T^{2}\) 1.2.b
\(7\) \( 1 + 4 T + 7 T^{2}\) 1.7.e
\(11\) \( 1 - 4 T + 11 T^{2}\) 1.11.ae
\(17\) \( 1 - 2 T + 17 T^{2}\) 1.17.ac
\(19\) \( 1 + 19 T^{2}\) 1.19.a
\(23\) \( 1 + 23 T^{2}\) 1.23.a
\(29\) \( 1 - 10 T + 29 T^{2}\) 1.29.ak
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 38025.n do not have complex multiplication.

Modular form 38025.2.a.n

Copy content sage:E.q_eigenform(10)
 
\(q - q^{2} - q^{4} - 4 q^{7} + 3 q^{8} + 4 q^{11} + 4 q^{14} - q^{16} + 2 q^{17} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 4 & 2 & 4 \\ 4 & 1 & 2 & 4 \\ 2 & 2 & 1 & 2 \\ 4 & 4 & 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 38025.n

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
38025.n1 38025bm4 \([1, -1, 1, -2643530, 1654958972]\) \(37159393753/1053\) \(57894330942703125\) \([2]\) \(688128\) \(2.3181\)  
38025.n2 38025bm3 \([1, -1, 1, -742280, -222715528]\) \(822656953/85683\) \(4710883151152546875\) \([2]\) \(688128\) \(2.3181\)  
38025.n3 38025bm2 \([1, -1, 1, -171905, 23686472]\) \(10218313/1521\) \(83625144695015625\) \([2, 2]\) \(344064\) \(1.9716\)  
38025.n4 38025bm1 \([1, -1, 1, 18220, 2012222]\) \(12167/39\) \(-2144234479359375\) \([2]\) \(172032\) \(1.6250\) \(\Gamma_0(N)\)-optimal