Properties

Label 379456h
Number of curves $1$
Conductor $379456$
CM no
Rank $1$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("h1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 379456h1 has rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(7\)\(1\)
\(11\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(3\) \( 1 + 3 T + 3 T^{2}\) 1.3.d
\(5\) \( 1 + 5 T^{2}\) 1.5.a
\(13\) \( 1 + T + 13 T^{2}\) 1.13.b
\(17\) \( 1 + 2 T + 17 T^{2}\) 1.17.c
\(19\) \( 1 + 2 T + 19 T^{2}\) 1.19.c
\(23\) \( 1 + 6 T + 23 T^{2}\) 1.23.g
\(29\) \( 1 + T + 29 T^{2}\) 1.29.b
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 379456h do not have complex multiplication.

Modular form 379456.2.a.h

Copy content sage:E.q_eigenform(10)
 
\(q - 3 q^{3} + 6 q^{9} - q^{13} - 2 q^{17} - 2 q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 379456h

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
379456.h1 379456h1 \([0, 0, 0, -10045420, -12249395312]\) \(39411764973000/19487171\) \(55430771345084219392\) \([]\) \(20643840\) \(2.7417\) \(\Gamma_0(N)\)-optimal