Properties

Label 378560.ex
Number of curves $4$
Conductor $378560$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("ex1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 378560.ex have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(5\)\(1 - T\)
\(7\)\(1 + T\)
\(13\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(3\) \( 1 + 3 T^{2}\) 1.3.a
\(11\) \( 1 + 11 T^{2}\) 1.11.a
\(17\) \( 1 + 6 T + 17 T^{2}\) 1.17.g
\(19\) \( 1 + 19 T^{2}\) 1.19.a
\(23\) \( 1 - 4 T + 23 T^{2}\) 1.23.ae
\(29\) \( 1 - 2 T + 29 T^{2}\) 1.29.ac
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 378560.ex do not have complex multiplication.

Modular form 378560.2.a.ex

Copy content sage:E.q_eigenform(10)
 
\(q + q^{5} - q^{7} - 3 q^{9} - 6 q^{17} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 378560.ex

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
378560.ex1 378560ex3 \([0, 0, 0, -4290572, 3256375824]\) \(6903498885921/374712065\) \(474130302304409354240\) \([2]\) \(11010048\) \(2.7233\)  
378560.ex2 378560ex2 \([0, 0, 0, -775372, -198362736]\) \(40743095121/10144225\) \(12835680820402585600\) \([2, 2]\) \(5505024\) \(2.3768\)  
378560.ex3 378560ex1 \([0, 0, 0, -721292, -235764464]\) \(32798729601/3185\) \(4030041073909760\) \([2]\) \(2752512\) \(2.0302\) \(\Gamma_0(N)\)-optimal
378560.ex4 378560ex4 \([0, 0, 0, 1874548, -1259390704]\) \(575722725759/874680625\) \(-1106750029922467840000\) \([2]\) \(11010048\) \(2.7233\)