Properties

Label 377520.e
Number of curves $4$
Conductor $377520$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("e1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 377520.e have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1 + T\)
\(5\)\(1 + T\)
\(11\)\(1\)
\(13\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(7\) \( 1 + 4 T + 7 T^{2}\) 1.7.e
\(17\) \( 1 - 6 T + 17 T^{2}\) 1.17.ag
\(19\) \( 1 + 19 T^{2}\) 1.19.a
\(23\) \( 1 - 8 T + 23 T^{2}\) 1.23.ai
\(29\) \( 1 + 6 T + 29 T^{2}\) 1.29.g
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 377520.e do not have complex multiplication.

Modular form 377520.2.a.e

Copy content sage:E.q_eigenform(10)
 
\(q - q^{3} - q^{5} - 4 q^{7} + q^{9} - q^{13} + q^{15} + 6 q^{17} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 377520.e

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
377520.e1 377520e4 \([0, -1, 0, -200416, -34336784]\) \(490757540836/2142075\) \(3885892125772800\) \([2]\) \(3932160\) \(1.8443\)  
377520.e2 377520e2 \([0, -1, 0, -18916, 75616]\) \(1650587344/950625\) \(431127084960000\) \([2, 2]\) \(1966080\) \(1.4977\)  
377520.e3 377520e1 \([0, -1, 0, -13471, 604870]\) \(9538484224/26325\) \(746181493200\) \([2]\) \(983040\) \(1.1511\) \(\Gamma_0(N)\)-optimal
377520.e4 377520e3 \([0, -1, 0, 75464, 528640]\) \(26198797244/15234375\) \(-27636351600000000\) \([2]\) \(3932160\) \(1.8443\)