Properties

Label 377520.bd
Number of curves $4$
Conductor $377520$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("bd1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 377520.bd have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1 + T\)
\(5\)\(1 + T\)
\(11\)\(1\)
\(13\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(7\) \( 1 - 2 T + 7 T^{2}\) 1.7.ac
\(17\) \( 1 + 17 T^{2}\) 1.17.a
\(19\) \( 1 - 2 T + 19 T^{2}\) 1.19.ac
\(23\) \( 1 - 6 T + 23 T^{2}\) 1.23.ag
\(29\) \( 1 + 29 T^{2}\) 1.29.a
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 377520.bd do not have complex multiplication.

Modular form 377520.2.a.bd

Copy content sage:E.q_eigenform(10)
 
\(q - q^{3} - q^{5} + 2 q^{7} + q^{9} - q^{13} + q^{15} + 2 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 3 & 6 & 2 \\ 3 & 1 & 2 & 6 \\ 6 & 2 & 1 & 3 \\ 2 & 6 & 3 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 377520.bd

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
377520.bd1 377520bd4 \([0, -1, 0, -2315496, -1286386704]\) \(189208196468929/10860320250\) \(78805892310672384000\) \([2]\) \(9953280\) \(2.5719\)  
377520.bd2 377520bd2 \([0, -1, 0, -398856, 96660720]\) \(967068262369/4928040\) \(35759404934922240\) \([2]\) \(3317760\) \(2.0226\)  
377520.bd3 377520bd1 \([0, -1, 0, -11656, 3113200]\) \(-24137569/561600\) \(-4075145861529600\) \([2]\) \(1658880\) \(1.6760\) \(\Gamma_0(N)\)-optimal
377520.bd4 377520bd3 \([0, -1, 0, 104504, -82194704]\) \(17394111071/411937500\) \(-2989147789056000000\) \([2]\) \(4976640\) \(2.2253\)