Properties

Label 374790.y
Number of curves $4$
Conductor $374790$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("y1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 374790.y have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 + T\)
\(3\)\(1 + T\)
\(5\)\(1 - T\)
\(13\)\(1 + T\)
\(31\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(7\) \( 1 - 2 T + 7 T^{2}\) 1.7.ac
\(11\) \( 1 + 11 T^{2}\) 1.11.a
\(17\) \( 1 + 17 T^{2}\) 1.17.a
\(19\) \( 1 - 2 T + 19 T^{2}\) 1.19.ac
\(23\) \( 1 - 6 T + 23 T^{2}\) 1.23.ag
\(29\) \( 1 + 29 T^{2}\) 1.29.a
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 374790.y do not have complex multiplication.

Modular form 374790.2.a.y

Copy content sage:E.q_eigenform(10)
 
\(q - q^{2} - q^{3} + q^{4} + q^{5} + q^{6} + 2 q^{7} - q^{8} + q^{9} - q^{10} - q^{12} - q^{13} - 2 q^{14} - q^{15} + q^{16} - q^{18} + 2 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 3 & 6 \\ 2 & 1 & 6 & 3 \\ 3 & 6 & 1 & 2 \\ 6 & 3 & 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 374790.y

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
374790.y1 374790y4 \([1, 1, 0, -838546997, 9345876676269]\) \(73474353581350183614361/576510977802240\) \(511655614936397290045440\) \([2]\) \(124416000\) \(3.7224\)  
374790.y2 374790y3 \([1, 1, 0, -51295797, 152514612909]\) \(-16818951115904497561/1592332281446400\) \(-1413200761158808004198400\) \([2]\) \(62208000\) \(3.3758\)  
374790.y3 374790y2 \([1, 1, 0, -15378422, -880231116]\) \(453198971846635561/261896250564000\) \(232433886415648326084000\) \([2]\) \(41472000\) \(3.1731\)  
374790.y4 374790y1 \([1, 1, 0, 3841578, -107587116]\) \(7064514799444439/4094064000000\) \(-3633496870249584000000\) \([2]\) \(20736000\) \(2.8265\) \(\Gamma_0(N)\)-optimal