Properties

Label 37440ff
Number of curves $4$
Conductor $37440$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("ff1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 37440ff have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1\)
\(5\)\(1 - T\)
\(13\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(7\) \( 1 - 2 T + 7 T^{2}\) 1.7.ac
\(11\) \( 1 - 4 T + 11 T^{2}\) 1.11.ae
\(17\) \( 1 + 17 T^{2}\) 1.17.a
\(19\) \( 1 - 6 T + 19 T^{2}\) 1.19.ag
\(23\) \( 1 - 6 T + 23 T^{2}\) 1.23.ag
\(29\) \( 1 + 8 T + 29 T^{2}\) 1.29.i
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 37440ff do not have complex multiplication.

Modular form 37440.2.a.ff

Copy content sage:E.q_eigenform(10)
 
\(q + q^{5} + 4 q^{7} - q^{13} - 2 q^{17} - 8 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.

Elliptic curves in class 37440ff

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
37440.fs4 37440ff1 \([0, 0, 0, 117393, 11012056]\) \(3834800837445824/3342041015625\) \(-155926265625000000\) \([2]\) \(393216\) \(1.9865\) \(\Gamma_0(N)\)-optimal
37440.fs3 37440ff2 \([0, 0, 0, -585732, 97637056]\) \(7442744143086784/2927948765625\) \(8742808166976000000\) \([2, 2]\) \(786432\) \(2.3331\)  
37440.fs2 37440ff3 \([0, 0, 0, -4230732, -3280548944]\) \(350584567631475848/8259273550125\) \(197296469378371584000\) \([2]\) \(1572864\) \(2.6797\)  
37440.fs1 37440ff4 \([0, 0, 0, -8190732, 9019823056]\) \(2543984126301795848/909361981125\) \(21722722606780416000\) \([2]\) \(1572864\) \(2.6797\)