Show commands: SageMath
Rank
The elliptic curves in class 37440ff have rank \(0\).
L-function data
Bad L-factors: |
| ||||||||||||||||||||||||
Good L-factors: |
| ||||||||||||||||||||||||
See L-function page for more information |
Complex multiplication
The elliptic curves in class 37440ff do not have complex multiplication.Modular form 37440.2.a.ff
Isogeny matrix
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)
Isogeny graph
The vertices are labelled with Cremona labels.
Elliptic curves in class 37440ff
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
37440.fs4 | 37440ff1 | \([0, 0, 0, 117393, 11012056]\) | \(3834800837445824/3342041015625\) | \(-155926265625000000\) | \([2]\) | \(393216\) | \(1.9865\) | \(\Gamma_0(N)\)-optimal |
37440.fs3 | 37440ff2 | \([0, 0, 0, -585732, 97637056]\) | \(7442744143086784/2927948765625\) | \(8742808166976000000\) | \([2, 2]\) | \(786432\) | \(2.3331\) | |
37440.fs2 | 37440ff3 | \([0, 0, 0, -4230732, -3280548944]\) | \(350584567631475848/8259273550125\) | \(197296469378371584000\) | \([2]\) | \(1572864\) | \(2.6797\) | |
37440.fs1 | 37440ff4 | \([0, 0, 0, -8190732, 9019823056]\) | \(2543984126301795848/909361981125\) | \(21722722606780416000\) | \([2]\) | \(1572864\) | \(2.6797\) |