Properties

Label 37440dd
Number of curves $2$
Conductor $37440$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("dd1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 37440dd have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1\)
\(5\)\(1 - T\)
\(13\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(7\) \( 1 + 4 T + 7 T^{2}\) 1.7.e
\(11\) \( 1 + 11 T^{2}\) 1.11.a
\(17\) \( 1 + 2 T + 17 T^{2}\) 1.17.c
\(19\) \( 1 + 19 T^{2}\) 1.19.a
\(23\) \( 1 + 23 T^{2}\) 1.23.a
\(29\) \( 1 + 2 T + 29 T^{2}\) 1.29.c
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 37440dd do not have complex multiplication.

Modular form 37440.2.a.dd

Copy content sage:E.q_eigenform(10)
 
\(q - q^{5} - 2 q^{7} + 4 q^{11} + q^{13} + 8 q^{17} - 2 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.

Elliptic curves in class 37440dd

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
37440.u2 37440dd1 \([0, 0, 0, -10908, -25314768]\) \(-445090032/858203125\) \(-276758726400000000\) \([2]\) \(442368\) \(2.0258\) \(\Gamma_0(N)\)-optimal
37440.u1 37440dd2 \([0, 0, 0, -1360908, -603654768]\) \(216092050322508/3016755625\) \(3891449100165120000\) \([2]\) \(884736\) \(2.3724\)