Properties

Label 374400.hs
Number of curves $1$
Conductor $374400$
CM no
Rank $0$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("hs1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 374400.hs1 has rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1\)
\(5\)\(1\)
\(13\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(7\) \( 1 - 2 T + 7 T^{2}\) 1.7.ac
\(11\) \( 1 + 4 T + 11 T^{2}\) 1.11.e
\(17\) \( 1 + 6 T + 17 T^{2}\) 1.17.g
\(19\) \( 1 - 5 T + 19 T^{2}\) 1.19.af
\(23\) \( 1 - 6 T + 23 T^{2}\) 1.23.ag
\(29\) \( 1 + T + 29 T^{2}\) 1.29.b
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 374400.hs do not have complex multiplication.

Modular form 374400.2.a.hs

Copy content sage:E.q_eigenform(10)
 
\(q + 2 q^{7} - 4 q^{11} + q^{13} - 6 q^{17} + 5 q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 374400.hs

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
374400.hs1 374400hs1 \([0, 0, 0, -56128125, -161857606250]\) \(-21459903980300000/812017791\) \(-739951212048750000000\) \([]\) \(30643200\) \(3.0904\) \(\Gamma_0(N)\)-optimal