Properties

Label 374400.fb
Number of curves $2$
Conductor $374400$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("fb1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 374400.fb have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1\)
\(5\)\(1\)
\(13\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(7\) \( 1 + 7 T^{2}\) 1.7.a
\(11\) \( 1 + 6 T + 11 T^{2}\) 1.11.g
\(17\) \( 1 - 6 T + 17 T^{2}\) 1.17.ag
\(19\) \( 1 + 4 T + 19 T^{2}\) 1.19.e
\(23\) \( 1 + 4 T + 23 T^{2}\) 1.23.e
\(29\) \( 1 + 10 T + 29 T^{2}\) 1.29.k
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 374400.fb do not have complex multiplication.

Modular form 374400.2.a.fb

Copy content sage:E.q_eigenform(10)
 
\(q - 6 q^{11} - q^{13} + 6 q^{17} - 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 374400.fb

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
374400.fb1 374400fb1 \([0, 0, 0, -6497625, 6372931250]\) \(166463915033056/62462907\) \(11383864800750000000\) \([2]\) \(14909440\) \(2.6234\) \(\Gamma_0(N)\)-optimal
374400.fb2 374400fb2 \([0, 0, 0, -5547000, 8302700000]\) \(-809134470272/808321761\) \(-18856530040608000000000\) \([2]\) \(29818880\) \(2.9700\)