Properties

Label 37440.dr
Number of curves $2$
Conductor $37440$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("dr1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 37440.dr have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1\)
\(5\)\(1 - T\)
\(13\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(7\) \( 1 + 2 T + 7 T^{2}\) 1.7.c
\(11\) \( 1 + 2 T + 11 T^{2}\) 1.11.c
\(17\) \( 1 - 2 T + 17 T^{2}\) 1.17.ac
\(19\) \( 1 - 2 T + 19 T^{2}\) 1.19.ac
\(23\) \( 1 + 8 T + 23 T^{2}\) 1.23.i
\(29\) \( 1 + 6 T + 29 T^{2}\) 1.29.g
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 37440.dr do not have complex multiplication.

Modular form 37440.2.a.dr

Copy content sage:E.q_eigenform(10)
 
\(q + q^{5} - 2 q^{7} - 2 q^{11} + q^{13} + 2 q^{17} + 2 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 37440.dr

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
37440.dr1 37440cs2 \([0, 0, 0, -381252, -90443104]\) \(2052450196928704/4317958125\) \(12893353873920000\) \([2]\) \(294912\) \(1.9764\)  
37440.dr2 37440cs1 \([0, 0, 0, -15627, -2400604]\) \(-9045718037056/48125390625\) \(-2245338225000000\) \([2]\) \(147456\) \(1.6298\) \(\Gamma_0(N)\)-optimal