Properties

Label 37440.cp
Number of curves $4$
Conductor $37440$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("cp1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 37440.cp have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1\)
\(5\)\(1 + T\)
\(13\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(7\) \( 1 - 4 T + 7 T^{2}\) 1.7.ae
\(11\) \( 1 + 4 T + 11 T^{2}\) 1.11.e
\(17\) \( 1 - 6 T + 17 T^{2}\) 1.17.ag
\(19\) \( 1 + 19 T^{2}\) 1.19.a
\(23\) \( 1 + 8 T + 23 T^{2}\) 1.23.i
\(29\) \( 1 - 6 T + 29 T^{2}\) 1.29.ag
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 37440.cp do not have complex multiplication.

Modular form 37440.2.a.cp

Copy content sage:E.q_eigenform(10)
 
\(q - q^{5} + 4 q^{7} - 4 q^{11} - q^{13} + 6 q^{17} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 37440.cp

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
37440.cp1 37440dz4 \([0, 0, 0, -59628, -5583152]\) \(490757540836/2142075\) \(102339226828800\) \([2]\) \(196608\) \(1.5412\)  
37440.cp2 37440dz2 \([0, 0, 0, -5628, 11248]\) \(1650587344/950625\) \(11354204160000\) \([2, 2]\) \(98304\) \(1.1946\)  
37440.cp3 37440dz1 \([0, 0, 0, -4008, 97432]\) \(9538484224/26325\) \(19651507200\) \([2]\) \(49152\) \(0.84805\) \(\Gamma_0(N)\)-optimal
37440.cp4 37440dz3 \([0, 0, 0, 22452, 89872]\) \(26198797244/15234375\) \(-727833600000000\) \([2]\) \(196608\) \(1.5412\)