Properties

Label 372645.es
Number of curves $1$
Conductor $372645$
CM no
Rank $0$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("es1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 372645.es1 has rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(3\)\(1\)
\(5\)\(1 - T\)
\(7\)\(1\)
\(13\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(2\) \( 1 - T + 2 T^{2}\) 1.2.ab
\(11\) \( 1 - 5 T + 11 T^{2}\) 1.11.af
\(17\) \( 1 + 4 T + 17 T^{2}\) 1.17.e
\(19\) \( 1 + 5 T + 19 T^{2}\) 1.19.f
\(23\) \( 1 - 6 T + 23 T^{2}\) 1.23.ag
\(29\) \( 1 + 10 T + 29 T^{2}\) 1.29.k
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 372645.es do not have complex multiplication.

Modular form 372645.2.a.es

Copy content sage:E.q_eigenform(10)
 
\(q + q^{2} - q^{4} + q^{5} - 3 q^{8} + q^{10} + 5 q^{11} - q^{16} - 4 q^{17} - 5 q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 372645.es

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
372645.es1 372645es1 \([1, -1, 0, -262404, 394677765]\) \(-28561/945\) \(-66114146436064562745\) \([]\) \(11501568\) \(2.4835\) \(\Gamma_0(N)\)-optimal