Properties

Label 372645.dl
Number of curves $2$
Conductor $372645$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("dl1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 372645.dl have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(3\)\(1\)
\(5\)\(1 + T\)
\(7\)\(1\)
\(13\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(2\) \( 1 - T + 2 T^{2}\) 1.2.ab
\(11\) \( 1 + 6 T + 11 T^{2}\) 1.11.g
\(17\) \( 1 - 4 T + 17 T^{2}\) 1.17.ae
\(19\) \( 1 + 4 T + 19 T^{2}\) 1.19.e
\(23\) \( 1 + 23 T^{2}\) 1.23.a
\(29\) \( 1 + 4 T + 29 T^{2}\) 1.29.e
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 372645.dl do not have complex multiplication.

Modular form 372645.2.a.dl

Copy content sage:E.q_eigenform(10)
 
\(q + q^{2} - q^{4} - q^{5} - 3 q^{8} - q^{10} - 6 q^{11} - q^{16} + 4 q^{17} - 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 372645.dl

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
372645.dl1 372645dl2 \([1, -1, 0, -1089056565, 13759703982506]\) \(9316717055063573427/57377784953125\) \(879743155277711825880609375\) \([2]\) \(201277440\) \(4.0085\)  
372645.dl2 372645dl1 \([1, -1, 0, -1087441770, 13802751510575]\) \(9275335480470938787/355047875\) \(5443760822804904497625\) \([2]\) \(100638720\) \(3.6619\) \(\Gamma_0(N)\)-optimal