Properties

Label 37026.x
Number of curves $4$
Conductor $37026$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("x1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 37026.x have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 - T\)
\(3\)\(1\)
\(11\)\(1\)
\(17\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 + 2 T + 5 T^{2}\) 1.5.c
\(7\) \( 1 + 4 T + 7 T^{2}\) 1.7.e
\(13\) \( 1 - 2 T + 13 T^{2}\) 1.13.ac
\(19\) \( 1 + 4 T + 19 T^{2}\) 1.19.e
\(23\) \( 1 - 4 T + 23 T^{2}\) 1.23.ae
\(29\) \( 1 + 6 T + 29 T^{2}\) 1.29.g
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 37026.x do not have complex multiplication.

Modular form 37026.2.a.x

Copy content sage:E.q_eigenform(10)
 
\(q + q^{2} + q^{4} - 2 q^{5} - 4 q^{7} + q^{8} - 2 q^{10} + 2 q^{13} - 4 q^{14} + q^{16} + q^{17} - 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 37026.x

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
37026.x1 37026bn4 \([1, -1, 1, -2109416, -1092378999]\) \(803760366578833/65593817586\) \(84712314376747902834\) \([2]\) \(1474560\) \(2.5665\)  
37026.x2 37026bn2 \([1, -1, 1, -443246, 93934041]\) \(7457162887153/1370924676\) \(1770505306965703044\) \([2, 2]\) \(737280\) \(2.2199\)  
37026.x3 37026bn1 \([1, -1, 1, -421466, 105416457]\) \(6411014266033/296208\) \(382543144161552\) \([2]\) \(368640\) \(1.8734\) \(\Gamma_0(N)\)-optimal
37026.x4 37026bn3 \([1, -1, 1, 874444, 545111097]\) \(57258048889007/132611470002\) \(-171263465829587365938\) \([2]\) \(1474560\) \(2.5665\)