sage:E = EllipticCurve("a1")
E.isogeny_class()
sage:E.rank()
The elliptic curves in class 36a have
rank 0.
| |
| Bad L-factors: |
| Prime |
L-Factor |
| 2 | 1 |
| 3 | 1 |
|
| |
| Good L-factors: |
| Prime |
L-Factor |
Isogeny Class over Fp |
| 5 |
1+5T2 |
1.5.a
|
| 7 |
1+4T+7T2 |
1.7.e
|
| 11 |
1+11T2 |
1.11.a
|
| 13 |
1−2T+13T2 |
1.13.ac
|
| 17 |
1+17T2 |
1.17.a
|
| 19 |
1−8T+19T2 |
1.19.ai
|
| 23 |
1+23T2 |
1.23.a
|
| 29 |
1+29T2 |
1.29.a
|
| ⋯ | ⋯ | ⋯ |
|
| |
| See L-function page for more information |
Each elliptic curve in class 36a has complex multiplication by an order in the imaginary quadratic field
Q(−3).
sage:E.q_eigenform(10)
sage:E.isogeny_class().matrix()
The i,j entry is the smallest degree of a cyclic isogeny between the i-th and j-th curve in the isogeny class, in the Cremona numbering.
⎝⎜⎜⎛1236216336126321⎠⎟⎟⎞
sage:E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with Cremona labels.
Elliptic curves in class 36a
sage:E.isogeny_class().curves
| LMFDB label |
Cremona label |
Weierstrass coefficients |
j-invariant |
Discriminant |
Torsion structure |
Modular degree |
Faltings height |
Optimality |
CM discriminant |
| 36.a4 |
36a1 |
[0,0,0,0,1] |
0 |
−432 |
[6] |
1 |
−0.81542
|
Γ0(N)-optimal |
−3 |
| 36.a2 |
36a2 |
[0,0,0,−15,22] |
54000 |
6912 |
[6] |
2 |
−0.46884
|
|
−12 |
| 36.a3 |
36a3 |
[0,0,0,0,−27] |
0 |
−314928 |
[2] |
3 |
−0.26611
|
|
−3 |
| 36.a1 |
36a4 |
[0,0,0,−135,−594] |
54000 |
5038848 |
[2] |
6 |
0.080464
|
|
−12 |