Properties

Label 36a
Number of curves 44
Conductor 3636
CM Q(3)\Q(\sqrt{-3})
Rank 00
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("a1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 36a have rank 00.

L-function data

 
Bad L-factors:
Prime L-Factor
2211
3311
 
Good L-factors:
Prime L-Factor Isogeny Class over Fp\mathbb{F}_p
55 1+5T2 1 + 5 T^{2} 1.5.a
77 1+4T+7T2 1 + 4 T + 7 T^{2} 1.7.e
1111 1+11T2 1 + 11 T^{2} 1.11.a
1313 12T+13T2 1 - 2 T + 13 T^{2} 1.13.ac
1717 1+17T2 1 + 17 T^{2} 1.17.a
1919 18T+19T2 1 - 8 T + 19 T^{2} 1.19.ai
2323 1+23T2 1 + 23 T^{2} 1.23.a
2929 1+29T2 1 + 29 T^{2} 1.29.a
\cdots\cdots\cdots
 
See L-function page for more information

Complex multiplication

Each elliptic curve in class 36a has complex multiplication by an order in the imaginary quadratic field Q(3)\Q(\sqrt{-3}) .

Modular form 36.2.a.a

Copy content sage:E.q_eigenform(10)
 
q4q7+2q13+8q19+O(q20)q - 4 q^{7} + 2 q^{13} + 8 q^{19} + O(q^{20}) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The i,ji,j entry is the smallest degree of a cyclic isogeny between the ii-th and jj-th curve in the isogeny class, in the Cremona numbering.

(1236216336126321)\left(\begin{array}{rrrr} 1 & 2 & 3 & 6 \\ 2 & 1 & 6 & 3 \\ 3 & 6 & 1 & 2 \\ 6 & 3 & 2 & 1 \end{array}\right)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.

Elliptic curves in class 36a

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality CM discriminant
36.a4 36a1 [0,0,0,0,1][0, 0, 0, 0, 1] 00 432-432 [6][6] 11 0.81542-0.81542 Γ0(N)\Gamma_0(N)-optimal 3-3
36.a2 36a2 [0,0,0,15,22][0, 0, 0, -15, 22] 5400054000 69126912 [6][6] 22 0.46884-0.46884   12-12
36.a3 36a3 [0,0,0,0,27][0, 0, 0, 0, -27] 00 314928-314928 [2][2] 33 0.26611-0.26611   3-3
36.a1 36a4 [0,0,0,135,594][0, 0, 0, -135, -594] 5400054000 50388485038848 [2][2] 66 0.0804640.080464   12-12