Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2=x^3+x^2-978033x+146034063\) | (homogenize, simplify) |
\(y^2z=x^3+x^2z-978033xz^2+146034063z^3\) | (dehomogenize, simplify) |
\(y^2=x^3-79220700x+106696494000\) | (homogenize, minimize) |
Mordell-Weil group structure
\(\Z \oplus \Z/{2}\Z \oplus \Z/{2}\Z\)
Infinite order Mordell-Weil generator and height
$P$ | = | \(\left(-441, 22176\right)\) |
$\hat{h}(P)$ | ≈ | $1.9438122115432643163218801094$ |
Torsion generators
\( \left(153, 0\right) \), \( \left(903, 0\right) \)
Integral points
\( \left(-1057, 0\right) \), \((-441,\pm 22176)\), \( \left(153, 0\right) \), \( \left(903, 0\right) \), \((2793,\pm 138600)\)
Invariants
Conductor: | \( 369600 \) | = | $2^{6} \cdot 3 \cdot 5^{2} \cdot 7 \cdot 11$ | comment: Conductor
sage: E.conductor().factor()
gp: ellglobalred(E)[1]
magma: Conductor(E);
oscar: conductor(E)
|
Discriminant: | $50620379040000000000 $ | = | $2^{14} \cdot 3^{2} \cdot 5^{10} \cdot 7^{4} \cdot 11^{4} $ | comment: Discriminant
sage: E.discriminant().factor()
gp: E.disc
magma: Discriminant(E);
oscar: discriminant(E)
|
j-invariant: | \( \frac{404151985581136}{197735855625} \) | = | $2^{4} \cdot 3^{-2} \cdot 5^{-4} \cdot 7^{-4} \cdot 11^{-4} \cdot 13^{3} \cdot 37^{3} \cdot 61^{3}$ | comment: j-invariant
sage: E.j_invariant().factor()
gp: E.j
magma: jInvariant(E);
oscar: j_invariant(E)
|
Endomorphism ring: | $\Z$ | |||
Geometric endomorphism ring: | \(\Z\) | (no potential complex multiplication) | sage: E.has_cm()
magma: HasComplexMultiplication(E);
| |
Sato-Tate group: | $\mathrm{SU}(2)$ | |||
Faltings height: | $2.4742325328754122560758574858\dots$ | gp: ellheight(E)
magma: FaltingsHeight(E);
oscar: faltings_height(E)
|
||
Stable Faltings height: | $0.86084186600509254112204034415\dots$ | magma: StableFaltingsHeight(E);
oscar: stable_faltings_height(E)
|
||
$abc$ quality: | $0.9487204231083621\dots$ | |||
Szpiro ratio: | $4.133601408424997\dots$ |
BSD invariants
Analytic rank: | $1$ | sage: E.analytic_rank()
gp: ellanalyticrank(E)
magma: AnalyticRank(E);
|
Regulator: | $1.9438122115432643163218801094\dots$ | comment: Regulator
sage: E.regulator()
G = E.gen \\ if available
magma: Regulator(E);
|
Real period: | $0.17787940389478069213414121755\dots$ | comment: Real Period
sage: E.period_lattice().omega()
gp: if(E.disc>0,2,1)*E.omega[1]
magma: (Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
|
Tamagawa product: | $ 512 $ = $ 2^{2}\cdot2\cdot2^{2}\cdot2^{2}\cdot2^{2} $ | comment: Tamagawa numbers
sage: E.tamagawa_numbers()
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
magma: TamagawaNumbers(E);
oscar: tamagawa_numbers(E)
|
Torsion order: | $4$ | comment: Torsion order
sage: E.torsion_order()
gp: elltors(E)[1]
magma: Order(TorsionSubgroup(E));
oscar: prod(torsion_structure(E)[1])
|
Analytic order of Ш: | $1$ ( rounded) | comment: Order of Sha
sage: E.sha().an_numerical()
magma: MordellWeilShaInformation(E);
|
Special value: | $ L'(E,1) $ ≈ $ 11.064453039126758441024542699 $ | comment: Special L-value
r = E.rank();
gp: [r,L1r] = ellanalyticrank(E); L1r/r!
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
|
BSD formula
$\displaystyle 11.064453039 \approx L'(E,1) = \frac{\# Ш(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \approx \frac{1 \cdot 0.177879 \cdot 1.943812 \cdot 512}{4^2} \approx 11.064453039$
Modular invariants
Modular form 369600.2.a.vq
For more coefficients, see the Downloads section to the right.
Modular degree: | 9437184 | comment: Modular degree
sage: E.modular_degree()
gp: ellmoddegree(E)
magma: ModularDegree(E);
|
$ \Gamma_0(N) $-optimal: | no | |
Manin constant: | 1 | comment: Manin constant
magma: ManinConstant(E);
|
Local data
This elliptic curve is not semistable. There are 5 primes $p$ of bad reduction:
$p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $v_p(N)$ | $v_p(\Delta)$ | $v_p(\mathrm{den}(j))$ |
---|---|---|---|---|---|---|---|
$2$ | $4$ | $I_{4}^{*}$ | additive | -1 | 6 | 14 | 0 |
$3$ | $2$ | $I_{2}$ | split multiplicative | -1 | 1 | 2 | 2 |
$5$ | $4$ | $I_{4}^{*}$ | additive | 1 | 2 | 10 | 4 |
$7$ | $4$ | $I_{4}$ | split multiplicative | -1 | 1 | 4 | 4 |
$11$ | $4$ | $I_{4}$ | split multiplicative | -1 | 1 | 4 | 4 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$2$ | 2Cs | 4.12.0.3 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 9240 = 2^{3} \cdot 3 \cdot 5 \cdot 7 \cdot 11 \), index $192$, genus $1$, and generators
$\left(\begin{array}{rr} 2471 & 5550 \\ 3690 & 3691 \end{array}\right),\left(\begin{array}{rr} 5543 & 0 \\ 0 & 9239 \end{array}\right),\left(\begin{array}{rr} 5539 & 5080 \\ 7370 & 4149 \end{array}\right),\left(\begin{array}{rr} 5 & 4 \\ 9236 & 9237 \end{array}\right),\left(\begin{array}{rr} 9233 & 8 \\ 9232 & 9 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 8 & 1 \end{array}\right),\left(\begin{array}{rr} 2521 & 3700 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 5281 & 7400 \\ 6340 & 1881 \end{array}\right),\left(\begin{array}{rr} 919 & 6000 \\ 7880 & 6499 \end{array}\right),\left(\begin{array}{rr} 1 & 8 \\ 0 & 1 \end{array}\right)$.
The torsion field $K:=\Q(E[9240])$ is a degree-$4904976384000$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/9240\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
$\ell$ | Reduction type | Serre weight | Serre conductor |
---|---|---|---|
$2$ | additive | $2$ | \( 25 = 5^{2} \) |
$3$ | split multiplicative | $4$ | \( 123200 = 2^{6} \cdot 5^{2} \cdot 7 \cdot 11 \) |
$5$ | additive | $18$ | \( 14784 = 2^{6} \cdot 3 \cdot 7 \cdot 11 \) |
$7$ | split multiplicative | $8$ | \( 52800 = 2^{6} \cdot 3 \cdot 5^{2} \cdot 11 \) |
$11$ | split multiplicative | $12$ | \( 33600 = 2^{6} \cdot 3 \cdot 5^{2} \cdot 7 \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2 and 4.
Its isogeny class 369600vq
consists of 6 curves linked by isogenies of
degrees dividing 8.
Twists
The minimal quadratic twist of this elliptic curve is 9240y2, its twist by $-40$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z \oplus \Z/{2}\Z$ are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
---|---|---|---|
$2$ | \(\Q(\sqrt{-10}) \) | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$4$ | \(\Q(\sqrt{3}, \sqrt{10})\) | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$4$ | \(\Q(\sqrt{-3}, \sqrt{10})\) | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$8$ | 8.0.3317760000.2 | \(\Z/4\Z \oplus \Z/4\Z\) | not in database |
$8$ | deg 8 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
$8$ | 8.0.1439868559360000.104 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
$8$ | deg 8 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/12\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
No Iwasawa invariant data is available for this curve.
$p$-adic regulators
$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.