Properties

Label 369600.qn
Number of curves $2$
Conductor $369600$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
sage: E = EllipticCurve("qn1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 369600.qn

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
369600.qn1 369600qn2 \([0, 1, 0, -20993, -1175457]\) \(31226116949/71148\) \(2331377664000\) \([2]\) \(983040\) \(1.2546\)  
369600.qn2 369600qn1 \([0, 1, 0, -1793, -4257]\) \(19465109/11088\) \(363331584000\) \([2]\) \(491520\) \(0.90804\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curves in class 369600.qn have rank \(0\).

Complex multiplication

The elliptic curves in class 369600.qn do not have complex multiplication.

Modular form 369600.2.a.qn

sage: E.q_eigenform(10)
 
\(q + q^{3} - q^{7} + q^{9} + q^{11} + 4 q^{13} + 6 q^{17} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.