Properties

Label 369600.rm
Number of curves $4$
Conductor $369600$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("rm1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 369600.rm have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1 - T\)
\(5\)\(1\)
\(7\)\(1 - T\)
\(11\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(13\) \( 1 + 2 T + 13 T^{2}\) 1.13.c
\(17\) \( 1 + 6 T + 17 T^{2}\) 1.17.g
\(19\) \( 1 + 8 T + 19 T^{2}\) 1.19.i
\(23\) \( 1 + 23 T^{2}\) 1.23.a
\(29\) \( 1 - 2 T + 29 T^{2}\) 1.29.ac
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 369600.rm do not have complex multiplication.

Modular form 369600.2.a.rm

Copy content sage:E.q_eigenform(10)
 
\(q + q^{3} + q^{7} + q^{9} - q^{11} - 2 q^{13} - 6 q^{17} - 8 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 4 & 2 & 4 \\ 4 & 1 & 2 & 4 \\ 2 & 2 & 1 & 2 \\ 4 & 4 & 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 369600.rm

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
369600.rm1 369600rm4 \([0, 1, 0, -16896001633, -845331244475137]\) \(130231365028993807856757649/4753980000\) \(19472302080000000000\) \([2]\) \(283115520\) \(4.1196\)  
369600.rm2 369600rm3 \([0, 1, 0, -1075713633, -12689803195137]\) \(33608860073906150870929/2466782226562500000\) \(10103940000000000000000000000\) \([2]\) \(283115520\) \(4.1196\)  
369600.rm3 369600rm2 \([0, 1, 0, -1056001633, -13208524475137]\) \(31794905164720991157649/192099600000000\) \(786839961600000000000000\) \([2, 2]\) \(141557760\) \(3.7731\)  
369600.rm4 369600rm1 \([0, 1, 0, -64769633, -214464187137]\) \(-7336316844655213969/604492922880000\) \(-2476003012116480000000000\) \([2]\) \(70778880\) \(3.4265\) \(\Gamma_0(N)\)-optimal