sage:E = EllipticCurve("m1")
E.isogeny_class()
sage:E.rank()
The elliptic curve 3675.m1 has
rank \(1\).
|
Bad L-factors: |
Prime |
L-Factor |
\(3\) | \(1 - T\) |
\(5\) | \(1\) |
\(7\) | \(1\) |
|
|
Good L-factors: |
Prime |
L-Factor |
Isogeny Class over \(\mathbb{F}_p\) |
\(2\) |
\( 1 - T + 2 T^{2}\) |
1.2.ab
|
\(11\) |
\( 1 + 11 T^{2}\) |
1.11.a
|
\(13\) |
\( 1 + 3 T + 13 T^{2}\) |
1.13.d
|
\(17\) |
\( 1 - 2 T + 17 T^{2}\) |
1.17.ac
|
\(19\) |
\( 1 - T + 19 T^{2}\) |
1.19.ab
|
\(23\) |
\( 1 - 2 T + 23 T^{2}\) |
1.23.ac
|
\(29\) |
\( 1 + 8 T + 29 T^{2}\) |
1.29.i
|
$\cdots$ | $\cdots$ | $\cdots$ |
|
|
See L-function page for more information |
The elliptic curves in class 3675.m do not have complex multiplication.
sage:E.q_eigenform(10)
Elliptic curves in class 3675.m
sage:E.isogeny_class().curves