# Properties

 Label 3675.2.a.m Level $3675$ Weight $2$ Character orbit 3675.a Self dual yes Analytic conductor $29.345$ Analytic rank $1$ Dimension $1$ CM no Inner twists $1$

# Related objects

## Newspace parameters

 Level: $$N$$ $$=$$ $$3675 = 3 \cdot 5^{2} \cdot 7^{2}$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 3675.a (trivial)

## Newform invariants

 Self dual: yes Analytic conductor: $$29.3450227428$$ Analytic rank: $$1$$ Dimension: $$1$$ Coefficient field: $$\mathbb{Q}$$ Coefficient ring: $$\mathbb{Z}$$ Coefficient ring index: $$1$$ Twist minimal: no (minimal twist has level 525) Fricke sign: $$1$$ Sato-Tate group: $\mathrm{SU}(2)$

## $q$-expansion

 $$f(q)$$ $$=$$ $$q + q^{2} + q^{3} - q^{4} + q^{6} - 3q^{8} + q^{9} + O(q^{10})$$ $$q + q^{2} + q^{3} - q^{4} + q^{6} - 3q^{8} + q^{9} - q^{12} - 3q^{13} - q^{16} + 2q^{17} + q^{18} + q^{19} + 2q^{23} - 3q^{24} - 3q^{26} + q^{27} - 8q^{29} - 8q^{31} + 5q^{32} + 2q^{34} - q^{36} + 7q^{37} + q^{38} - 3q^{39} - 8q^{43} + 2q^{46} - 10q^{47} - q^{48} + 2q^{51} + 3q^{52} - 14q^{53} + q^{54} + q^{57} - 8q^{58} + 10q^{59} + 7q^{61} - 8q^{62} + 7q^{64} - 5q^{67} - 2q^{68} + 2q^{69} - 12q^{71} - 3q^{72} - 11q^{73} + 7q^{74} - q^{76} - 3q^{78} - 7q^{79} + q^{81} + 14q^{83} - 8q^{86} - 8q^{87} - 6q^{89} - 2q^{92} - 8q^{93} - 10q^{94} + 5q^{96} + 9q^{97} + O(q^{100})$$

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

Label $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
1.1
 0
1.00000 1.00000 −1.00000 0 1.00000 0 −3.00000 1.00000 0
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Atkin-Lehner signs

$$p$$ Sign
$$3$$ $$-1$$
$$5$$ $$-1$$
$$7$$ $$1$$

## Inner twists

This newform does not admit any (nontrivial) inner twists.

## Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 3675.2.a.m 1
5.b even 2 1 3675.2.a.e 1
7.b odd 2 1 3675.2.a.k 1
7.c even 3 2 525.2.i.b 2
35.c odd 2 1 3675.2.a.g 1
35.j even 6 2 525.2.i.d yes 2
35.l odd 12 4 525.2.r.c 4

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
525.2.i.b 2 7.c even 3 2
525.2.i.d yes 2 35.j even 6 2
525.2.r.c 4 35.l odd 12 4
3675.2.a.e 1 5.b even 2 1
3675.2.a.g 1 35.c odd 2 1
3675.2.a.k 1 7.b odd 2 1
3675.2.a.m 1 1.a even 1 1 trivial

## Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on $$S_{2}^{\mathrm{new}}(\Gamma_0(3675))$$:

 $$T_{2} - 1$$ $$T_{11}$$ $$T_{13} + 3$$

## Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$-1 + T$$
$3$ $$-1 + T$$
$5$ $$T$$
$7$ $$T$$
$11$ $$T$$
$13$ $$3 + T$$
$17$ $$-2 + T$$
$19$ $$-1 + T$$
$23$ $$-2 + T$$
$29$ $$8 + T$$
$31$ $$8 + T$$
$37$ $$-7 + T$$
$41$ $$T$$
$43$ $$8 + T$$
$47$ $$10 + T$$
$53$ $$14 + T$$
$59$ $$-10 + T$$
$61$ $$-7 + T$$
$67$ $$5 + T$$
$71$ $$12 + T$$
$73$ $$11 + T$$
$79$ $$7 + T$$
$83$ $$-14 + T$$
$89$ $$6 + T$$
$97$ $$-9 + T$$