Properties

Label 366912ex
Number of curves $2$
Conductor $366912$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("ex1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 366912ex have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1\)
\(7\)\(1\)
\(13\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 + 2 T + 5 T^{2}\) 1.5.c
\(11\) \( 1 - 4 T + 11 T^{2}\) 1.11.ae
\(17\) \( 1 - 2 T + 17 T^{2}\) 1.17.ac
\(19\) \( 1 + 4 T + 19 T^{2}\) 1.19.e
\(23\) \( 1 + 4 T + 23 T^{2}\) 1.23.e
\(29\) \( 1 + 29 T^{2}\) 1.29.a
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 366912ex do not have complex multiplication.

Modular form 366912.2.a.ex

Copy content sage:E.q_eigenform(10)
 
\(q - 2 q^{5} + 4 q^{11} + q^{13} + 2 q^{17} - 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.

Elliptic curves in class 366912ex

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
366912.ex1 366912ex1 \([0, 0, 0, -1052671116, 13145793507056]\) \(16728308209329751/16376256\) \(126288681524967707246592\) \([2]\) \(92897280\) \(3.7264\) \(\Gamma_0(N)\)-optimal
366912.ex2 366912ex2 \([0, 0, 0, -1044768396, 13352885865200]\) \(-16354376146655191/523792501128\) \(-4039327692490901495318839296\) \([2]\) \(185794560\) \(4.0729\)