Properties

Label 366912.ca
Number of curves $1$
Conductor $366912$
CM no
Rank $1$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("ca1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 366912.ca1 has rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1\)
\(7\)\(1\)
\(13\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 + 3 T + 5 T^{2}\) 1.5.d
\(11\) \( 1 - 2 T + 11 T^{2}\) 1.11.ac
\(17\) \( 1 + 4 T + 17 T^{2}\) 1.17.e
\(19\) \( 1 + 5 T + 19 T^{2}\) 1.19.f
\(23\) \( 1 + 3 T + 23 T^{2}\) 1.23.d
\(29\) \( 1 - 3 T + 29 T^{2}\) 1.29.ad
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 366912.ca do not have complex multiplication.

Modular form 366912.2.a.ca

Copy content sage:E.q_eigenform(10)
 
\(q - 3 q^{5} + 2 q^{11} + q^{13} - 4 q^{17} - 5 q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 366912.ca

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
366912.ca1 366912ca1 \([0, 0, 0, -1158654, -480041534]\) \(-91368216064/13\) \(-24475592546496\) \([]\) \(3440640\) \(1.9790\) \(\Gamma_0(N)\)-optimal