Properties

Label 366400.h
Number of curves $2$
Conductor $366400$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("h1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 366400.h have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(5\)\(1\)
\(229\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(3\) \( 1 + 2 T + 3 T^{2}\) 1.3.c
\(7\) \( 1 + 4 T + 7 T^{2}\) 1.7.e
\(11\) \( 1 + 11 T^{2}\) 1.11.a
\(13\) \( 1 + 4 T + 13 T^{2}\) 1.13.e
\(17\) \( 1 + 6 T + 17 T^{2}\) 1.17.g
\(19\) \( 1 + 19 T^{2}\) 1.19.a
\(23\) \( 1 - 8 T + 23 T^{2}\) 1.23.ai
\(29\) \( 1 - 6 T + 29 T^{2}\) 1.29.ag
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 366400.h do not have complex multiplication.

Modular form 366400.2.a.h

Copy content sage:E.q_eigenform(10)
 
\(q - 2 q^{3} - 4 q^{7} + q^{9} - 4 q^{13} - 6 q^{17} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 366400.h

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
366400.h1 366400h1 \([0, 1, 0, -96533, -11310437]\) \(6217784098816/163878125\) \(2622050000000000\) \([2]\) \(2672640\) \(1.7398\) \(\Gamma_0(N)\)-optimal
366400.h2 366400h2 \([0, 1, 0, 17967, -36385937]\) \(2505453104/2236328125\) \(-572500000000000000\) \([2]\) \(5345280\) \(2.0864\)