Properties

Label 364815a
Number of curves $1$
Conductor $364815$
CM no
Rank $2$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("a1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 364815a1 has rank \(2\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(3\)\(1\)
\(5\)\(1 - T\)
\(11\)\(1\)
\(67\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(2\) \( 1 + 2 T + 2 T^{2}\) 1.2.c
\(7\) \( 1 + 4 T + 7 T^{2}\) 1.7.e
\(13\) \( 1 + 6 T + 13 T^{2}\) 1.13.g
\(17\) \( 1 + 7 T + 17 T^{2}\) 1.17.h
\(19\) \( 1 - 4 T + 19 T^{2}\) 1.19.ae
\(23\) \( 1 - 8 T + 23 T^{2}\) 1.23.ai
\(29\) \( 1 + 2 T + 29 T^{2}\) 1.29.c
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 364815a do not have complex multiplication.

Modular form 364815.2.a.a

Copy content sage:E.q_eigenform(10)
 
\(q - 2 q^{2} + 2 q^{4} + q^{5} - 4 q^{7} - 2 q^{10} - 6 q^{13} + 8 q^{14} - 4 q^{16} - 7 q^{17} + 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 364815a

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
364815.a1 364815a1 \([0, 0, 1, 33, 580]\) \(45056/1675\) \(-147750075\) \([]\) \(248832\) \(0.24748\) \(\Gamma_0(N)\)-optimal