Properties

Label 364815.e
Number of curves $4$
Conductor $364815$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("e1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 364815.e have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(3\)\(1\)
\(5\)\(1 + T\)
\(11\)\(1\)
\(67\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(2\) \( 1 + T + 2 T^{2}\) 1.2.b
\(7\) \( 1 + 4 T + 7 T^{2}\) 1.7.e
\(13\) \( 1 - 6 T + 13 T^{2}\) 1.13.ag
\(17\) \( 1 - 6 T + 17 T^{2}\) 1.17.ag
\(19\) \( 1 + 4 T + 19 T^{2}\) 1.19.e
\(23\) \( 1 - 8 T + 23 T^{2}\) 1.23.ai
\(29\) \( 1 - 10 T + 29 T^{2}\) 1.29.ak
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 364815.e do not have complex multiplication.

Modular form 364815.2.a.e

Copy content sage:E.q_eigenform(10)
 
\(q - q^{2} - q^{4} - q^{5} - 4 q^{7} + 3 q^{8} + q^{10} + 6 q^{13} + 4 q^{14} - q^{16} + 6 q^{17} - 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 364815.e

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
364815.e1 364815e4 \([1, -1, 1, -12855668, -17738202468]\) \(181938238527312721/863671875\) \(1115404562288671875\) \([2]\) \(22609920\) \(2.6646\)  
364815.e2 364815e2 \([1, -1, 1, -816773, -267358044]\) \(46659888108001/3055325625\) \(3945855179552405625\) \([2, 2]\) \(11304960\) \(2.3181\)  
364815.e3 364815e1 \([1, -1, 1, -157928, 19107762]\) \(337298881681/73571025\) \(95014622233998225\) \([2]\) \(5652480\) \(1.9715\) \(\Gamma_0(N)\)-optimal
364815.e4 364815e3 \([1, -1, 1, 680602, -1138231344]\) \(26997300089999/448866220275\) \(-579696345851260871475\) \([2]\) \(22609920\) \(2.6646\)