Properties

Label 36414i
Number of curves $1$
Conductor $36414$
CM no
Rank $0$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("i1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 36414i1 has rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 + T\)
\(3\)\(1\)
\(7\)\(1 - T\)
\(17\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 + 3 T + 5 T^{2}\) 1.5.d
\(11\) \( 1 - T + 11 T^{2}\) 1.11.ab
\(13\) \( 1 - 4 T + 13 T^{2}\) 1.13.ae
\(19\) \( 1 + 19 T^{2}\) 1.19.a
\(23\) \( 1 + 8 T + 23 T^{2}\) 1.23.i
\(29\) \( 1 - T + 29 T^{2}\) 1.29.ab
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 36414i do not have complex multiplication.

Modular form 36414.2.a.i

Copy content sage:E.q_eigenform(10)
 
\(q - q^{2} + q^{4} - q^{5} + q^{7} - q^{8} + q^{10} - q^{11} - q^{14} + q^{16} - 2 q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 36414i

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
36414.t1 36414i1 \([1, -1, 0, -2200245, -2030477131]\) \(-207084606048940707/193434623148032\) \(-1100330995665164304384\) \([]\) \(1382400\) \(2.7340\) \(\Gamma_0(N)\)-optimal