Properties

Label 36414d
Number of curves $1$
Conductor $36414$
CM no
Rank $1$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("d1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 36414d1 has rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 + T\)
\(3\)\(1\)
\(7\)\(1 + T\)
\(17\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 + 3 T + 5 T^{2}\) 1.5.d
\(11\) \( 1 - 3 T + 11 T^{2}\) 1.11.ad
\(13\) \( 1 - 5 T + 13 T^{2}\) 1.13.af
\(19\) \( 1 - 2 T + 19 T^{2}\) 1.19.ac
\(23\) \( 1 - 6 T + 23 T^{2}\) 1.23.ag
\(29\) \( 1 + 6 T + 29 T^{2}\) 1.29.g
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 36414d do not have complex multiplication.

Modular form 36414.2.a.d

Copy content sage:E.q_eigenform(10)
 
\(q - q^{2} + q^{4} - q^{5} - q^{7} - q^{8} + q^{10} - 5 q^{11} - 4 q^{13} + q^{14} + q^{16} + 6 q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 36414d

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
36414.m1 36414d1 \([1, -1, 0, 660, 4382]\) \(5584653/4802\) \(-27315634374\) \([]\) \(27648\) \(0.69013\) \(\Gamma_0(N)\)-optimal