Properties

Label 36414.v
Number of curves $1$
Conductor $36414$
CM no
Rank $1$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("v1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 36414.v1 has rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 + T\)
\(3\)\(1\)
\(7\)\(1 + T\)
\(17\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 + 5 T^{2}\) 1.5.a
\(11\) \( 1 + 4 T + 11 T^{2}\) 1.11.e
\(13\) \( 1 + 2 T + 13 T^{2}\) 1.13.c
\(19\) \( 1 + 3 T + 19 T^{2}\) 1.19.d
\(23\) \( 1 + 4 T + 23 T^{2}\) 1.23.e
\(29\) \( 1 - 5 T + 29 T^{2}\) 1.29.af
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 36414.v do not have complex multiplication.

Modular form 36414.2.a.v

Copy content sage:E.q_eigenform(10)
 
\(q - q^{2} + q^{4} - q^{7} - q^{8} - 4 q^{11} - 2 q^{13} + q^{14} + q^{16} - 3 q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 36414.v

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
36414.v1 36414ba1 \([1, -1, 0, -502047, 115653325]\) \(2751936625/458752\) \(2332904011951177728\) \([]\) \(587520\) \(2.2457\) \(\Gamma_0(N)\)-optimal