Properties

Label 363090.gt
Number of curves $2$
Conductor $363090$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("gt1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 363090.gt have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 - T\)
\(3\)\(1 - T\)
\(5\)\(1 + T\)
\(7\)\(1\)
\(13\)\(1 - T\)
\(19\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(11\) \( 1 + 6 T + 11 T^{2}\) 1.11.g
\(17\) \( 1 + 4 T + 17 T^{2}\) 1.17.e
\(23\) \( 1 + 4 T + 23 T^{2}\) 1.23.e
\(29\) \( 1 + 2 T + 29 T^{2}\) 1.29.c
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 363090.gt do not have complex multiplication.

Modular form 363090.2.a.gt

Copy content sage:E.q_eigenform(10)
 
\(q + q^{2} + q^{3} + q^{4} - q^{5} + q^{6} + q^{8} + q^{9} - q^{10} - 6 q^{11} + q^{12} + q^{13} - q^{15} + q^{16} - 4 q^{17} + q^{18} - q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 363090.gt

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
363090.gt1 363090gt1 \([1, 0, 0, -1663551, 122696181]\) \(4327567469129368801/2448975666255300\) \(288119538159269789700\) \([2]\) \(17694720\) \(2.6158\) \(\Gamma_0(N)\)-optimal
363090.gt2 363090gt2 \([1, 0, 0, 6571879, 977533815]\) \(266811254002550436479/157909534224828750\) \(-18577898792016877608750\) \([2]\) \(35389440\) \(2.9624\)