Properties

Label 361998.cn
Number of curves $6$
Conductor $361998$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("cn1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 361998.cn have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 - T\)
\(3\)\(1\)
\(7\)\(1 + T\)
\(13\)\(1\)
\(17\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 + 2 T + 5 T^{2}\) 1.5.c
\(11\) \( 1 - 4 T + 11 T^{2}\) 1.11.ae
\(19\) \( 1 + 4 T + 19 T^{2}\) 1.19.e
\(23\) \( 1 + 8 T + 23 T^{2}\) 1.23.i
\(29\) \( 1 + 6 T + 29 T^{2}\) 1.29.g
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 361998.cn do not have complex multiplication.

Modular form 361998.2.a.cn

Copy content sage:E.q_eigenform(10)
 
\(q + q^{2} + q^{4} - 2 q^{5} - q^{7} + q^{8} - 2 q^{10} + 4 q^{11} - q^{14} + q^{16} - q^{17} - 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrrrr} 1 & 2 & 4 & 4 & 8 & 8 \\ 2 & 1 & 2 & 2 & 4 & 4 \\ 4 & 2 & 1 & 4 & 8 & 8 \\ 4 & 2 & 4 & 1 & 2 & 2 \\ 8 & 4 & 8 & 2 & 1 & 4 \\ 8 & 4 & 8 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 361998.cn

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
361998.cn1 361998cn5 \([1, -1, 1, -20865996716, 1160135576072295]\) \(285531136548675601769470657/17941034271597192\) \(63129902409069798855119112\) \([2]\) \(566231040\) \(4.4109\)  
361998.cn2 361998cn3 \([1, -1, 1, -1306605956, 18054925839591]\) \(70108386184777836280897/552468975892674624\) \(1943996762068408238803020864\) \([2, 2]\) \(283115520\) \(4.0643\)  
361998.cn3 361998cn6 \([1, -1, 1, -445050716, 41508527204967]\) \(-2770540998624539614657/209924951154647363208\) \(-738672112153645155443250945288\) \([2]\) \(566231040\) \(4.4109\)  
361998.cn4 361998cn2 \([1, -1, 1, -137991236, -156765956889]\) \(82582985847542515777/44772582831427584\) \(157543246501941525923303424\) \([2, 2]\) \(141557760\) \(3.7178\)  
361998.cn5 361998cn1 \([1, -1, 1, -106841156, -424507124505]\) \(38331145780597164097/55468445663232\) \(195179247109865107095552\) \([2]\) \(70778880\) \(3.3712\) \(\Gamma_0(N)\)-optimal
361998.cn6 361998cn4 \([1, -1, 1, 532222204, -1233396826905]\) \(4738217997934888496063/2928751705237796928\) \(-10305526790323608961784966208\) \([2]\) \(283115520\) \(4.0643\)