Properties

Label 35904.dd
Number of curves $2$
Conductor $35904$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("dd1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 35904.dd have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1 - T\)
\(11\)\(1 - T\)
\(17\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 - 2 T + 5 T^{2}\) 1.5.ac
\(7\) \( 1 - 2 T + 7 T^{2}\) 1.7.ac
\(13\) \( 1 + 13 T^{2}\) 1.13.a
\(19\) \( 1 - 6 T + 19 T^{2}\) 1.19.ag
\(23\) \( 1 - 6 T + 23 T^{2}\) 1.23.ag
\(29\) \( 1 - 2 T + 29 T^{2}\) 1.29.ac
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 35904.dd do not have complex multiplication.

Modular form 35904.2.a.dd

Copy content sage:E.q_eigenform(10)
 
\(q + q^{3} + 2 q^{5} + 2 q^{7} + q^{9} + q^{11} + 2 q^{15} - q^{17} + 6 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 35904.dd

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
35904.dd1 35904cw2 \([0, 1, 0, -78497, 4862175]\) \(204055591784617/78708537864\) \(20632970949820416\) \([2]\) \(258048\) \(1.8295\)  
35904.dd2 35904cw1 \([0, 1, 0, -34977, -2475297]\) \(18052771191337/444958272\) \(116643141255168\) \([2]\) \(129024\) \(1.4829\) \(\Gamma_0(N)\)-optimal