Properties

Label 358974.bi
Number of curves $4$
Conductor $358974$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("bi1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 358974.bi have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 + T\)
\(3\)\(1\)
\(7\)\(1\)
\(11\)\(1 + T\)
\(37\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 + 5 T^{2}\) 1.5.a
\(13\) \( 1 - 4 T + 13 T^{2}\) 1.13.ae
\(17\) \( 1 + 6 T + 17 T^{2}\) 1.17.g
\(19\) \( 1 + 2 T + 19 T^{2}\) 1.19.c
\(23\) \( 1 - 6 T + 23 T^{2}\) 1.23.ag
\(29\) \( 1 - 6 T + 29 T^{2}\) 1.29.ag
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 358974.bi do not have complex multiplication.

Modular form 358974.2.a.bi

Copy content sage:E.q_eigenform(10)
 
\(q - q^{2} + q^{4} - q^{8} - q^{11} + 4 q^{13} + q^{16} - 6 q^{17} - 2 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 3 & 6 \\ 2 & 1 & 6 & 3 \\ 3 & 6 & 1 & 2 \\ 6 & 3 & 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 358974.bi

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
358974.bi1 358974bi4 \([1, -1, 0, -476543727, -4003956286583]\) \(139545621883503188502625/220644468\) \(18923820140468628\) \([2]\) \(47775744\) \(3.2800\)  
358974.bi2 358974bi3 \([1, -1, 0, -29784267, -62554978571]\) \(34069730739753390625/1354703543952\) \(116187668069716050192\) \([2]\) \(23887872\) \(2.9334\)  
358974.bi3 358974bi2 \([1, -1, 0, -5899707, -5458821467]\) \(264788619837198625/3058196150592\) \(262289621093407693632\) \([2]\) \(15925248\) \(2.7307\)  
358974.bi4 358974bi1 \([1, -1, 0, -678267, 79037797]\) \(402355893390625/201513996288\) \(17283073788830158848\) \([2]\) \(7962624\) \(2.3841\) \(\Gamma_0(N)\)-optimal