Show commands: SageMath
Rank
The elliptic curves in class 3570.p have rank \(0\).
L-function data
| Bad L-factors: |
| |||||||||||||||||||||
| Good L-factors: |
| |||||||||||||||||||||
| See L-function page for more information | ||||||||||||||||||||||
Complex multiplication
The elliptic curves in class 3570.p do not have complex multiplication.Modular form 3570.2.a.p
Isogeny matrix
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rrrr} 1 & 3 & 6 & 2 \\ 3 & 1 & 2 & 6 \\ 6 & 2 & 1 & 3 \\ 2 & 6 & 3 & 1 \end{array}\right)\)
Isogeny graph
The vertices are labelled with LMFDB labels.
Elliptic curves in class 3570.p
| LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
|---|---|---|---|---|---|---|---|---|
| 3570.p1 | 3570n4 | \([1, 0, 1, -292573, 57476216]\) | \(2769646315294225853641/174474906948464640\) | \(174474906948464640\) | \([2]\) | \(55296\) | \(2.0594\) | |
| 3570.p2 | 3570n2 | \([1, 0, 1, -287998, 59464256]\) | \(2641739317048851306841/764694000\) | \(764694000\) | \([6]\) | \(18432\) | \(1.5101\) | |
| 3570.p3 | 3570n1 | \([1, 0, 1, -17998, 928256]\) | \(-644706081631626841/347004000000\) | \(-347004000000\) | \([6]\) | \(9216\) | \(1.1636\) | \(\Gamma_0(N)\)-optimal |
| 3570.p4 | 3570n3 | \([1, 0, 1, 14627, 3777656]\) | \(346124368852751159/6361262220902400\) | \(-6361262220902400\) | \([2]\) | \(27648\) | \(1.7129\) |