Properties

Label 3570.p
Number of curves $4$
Conductor $3570$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("p1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 3570.p have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 + T\)
\(3\)\(1 - T\)
\(5\)\(1 - T\)
\(7\)\(1 - T\)
\(17\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(11\) \( 1 + 11 T^{2}\) 1.11.a
\(13\) \( 1 + 4 T + 13 T^{2}\) 1.13.e
\(19\) \( 1 - 2 T + 19 T^{2}\) 1.19.ac
\(23\) \( 1 - 6 T + 23 T^{2}\) 1.23.ag
\(29\) \( 1 + 29 T^{2}\) 1.29.a
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 3570.p do not have complex multiplication.

Modular form 3570.2.a.p

Copy content sage:E.q_eigenform(10)
 
\(q - q^{2} + q^{3} + q^{4} + q^{5} - q^{6} + q^{7} - q^{8} + q^{9} - q^{10} + q^{12} - 4 q^{13} - q^{14} + q^{15} + q^{16} - q^{17} - q^{18} + 2 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 3 & 6 & 2 \\ 3 & 1 & 2 & 6 \\ 6 & 2 & 1 & 3 \\ 2 & 6 & 3 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 3570.p

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
3570.p1 3570n4 \([1, 0, 1, -292573, 57476216]\) \(2769646315294225853641/174474906948464640\) \(174474906948464640\) \([2]\) \(55296\) \(2.0594\)  
3570.p2 3570n2 \([1, 0, 1, -287998, 59464256]\) \(2641739317048851306841/764694000\) \(764694000\) \([6]\) \(18432\) \(1.5101\)  
3570.p3 3570n1 \([1, 0, 1, -17998, 928256]\) \(-644706081631626841/347004000000\) \(-347004000000\) \([6]\) \(9216\) \(1.1636\) \(\Gamma_0(N)\)-optimal
3570.p4 3570n3 \([1, 0, 1, 14627, 3777656]\) \(346124368852751159/6361262220902400\) \(-6361262220902400\) \([2]\) \(27648\) \(1.7129\)