Properties

Label 356928.y
Number of curves $4$
Conductor $356928$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("y1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 356928.y have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1 + T\)
\(11\)\(1 + T\)
\(13\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 + 2 T + 5 T^{2}\) 1.5.c
\(7\) \( 1 + 7 T^{2}\) 1.7.a
\(17\) \( 1 - 6 T + 17 T^{2}\) 1.17.ag
\(19\) \( 1 + 19 T^{2}\) 1.19.a
\(23\) \( 1 + 4 T + 23 T^{2}\) 1.23.e
\(29\) \( 1 + 6 T + 29 T^{2}\) 1.29.g
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 356928.y do not have complex multiplication.

Modular form 356928.2.a.y

Copy content sage:E.q_eigenform(10)
 
\(q - q^{3} - 2 q^{5} + q^{9} - q^{11} + 2 q^{15} + 6 q^{17} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 4 & 2 & 4 \\ 4 & 1 & 2 & 4 \\ 2 & 2 & 1 & 2 \\ 4 & 4 & 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 356928.y

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
356928.y1 356928y4 \([0, -1, 0, -445446369, -3618457100415]\) \(7725203825376001537/7722\) \(9770793460826112\) \([2]\) \(37158912\) \(3.2565\)  
356928.y2 356928y3 \([0, -1, 0, -29030369, -51434313087]\) \(2138362647385537/333926700822\) \(422523805333700476403712\) \([2]\) \(37158912\) \(3.2565\)  
356928.y3 356928y2 \([0, -1, 0, -27840609, -56530531071]\) \(1886079023633377/59629284\) \(75450067104499236864\) \([2, 2]\) \(18579456\) \(2.9099\)  
356928.y4 356928y1 \([0, -1, 0, -1665889, -961600511]\) \(-404075127457/82223856\) \(-104039408770876440576\) \([2]\) \(9289728\) \(2.5633\) \(\Gamma_0(N)\)-optimal