Properties

Label 356928.gc
Number of curves $4$
Conductor $356928$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("gc1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 356928.gc have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1 - T\)
\(11\)\(1 - T\)
\(13\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 + 5 T^{2}\) 1.5.a
\(7\) \( 1 + 4 T + 7 T^{2}\) 1.7.e
\(17\) \( 1 + 17 T^{2}\) 1.17.a
\(19\) \( 1 - 4 T + 19 T^{2}\) 1.19.ae
\(23\) \( 1 + 23 T^{2}\) 1.23.a
\(29\) \( 1 + 29 T^{2}\) 1.29.a
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 356928.gc do not have complex multiplication.

Modular form 356928.2.a.gc

Copy content sage:E.q_eigenform(10)
 
\(q + q^{3} - 4 q^{7} + q^{9} + q^{11} + 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 3 & 6 \\ 2 & 1 & 6 & 3 \\ 3 & 6 & 1 & 2 \\ 6 & 3 & 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 356928.gc

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
356928.gc1 356928gc4 \([0, 1, 0, -704938433, 7203036884031]\) \(30618029936661765625/3678951124992\) \(4655046826569632455852032\) \([2]\) \(111476736\) \(3.7580\)  
356928.gc2 356928gc3 \([0, 1, 0, -40403393, 131985337407]\) \(-5764706497797625/2612665516032\) \(-3305855366403955592527872\) \([2]\) \(55738368\) \(3.4114\)  
356928.gc3 356928gc2 \([0, 1, 0, -19474433, -18852792321]\) \(645532578015625/252306960048\) \(319248795047644845047808\) \([2]\) \(37158912\) \(3.2087\)  
356928.gc4 356928gc1 \([0, 1, 0, 3888127, -2120526849]\) \(5137417856375/4510142208\) \(-5706768711903942279168\) \([2]\) \(18579456\) \(2.8621\) \(\Gamma_0(N)\)-optimal