Show commands: SageMath
Rank
The elliptic curves in class 35568s have rank \(0\).
L-function data
Bad L-factors: |
| ||||||||||||||||||||||||
Good L-factors: |
| ||||||||||||||||||||||||
See L-function page for more information |
Complex multiplication
The elliptic curves in class 35568s do not have complex multiplication.Modular form 35568.2.a.s
Isogeny matrix
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)
Isogeny graph
The vertices are labelled with Cremona labels.
Elliptic curves in class 35568s
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
35568.l3 | 35568s1 | \([0, 0, 0, -180066, -29410045]\) | \(55356847905445888/60021\) | \(700084944\) | \([2]\) | \(92160\) | \(1.4161\) | \(\Gamma_0(N)\)-optimal |
35568.l2 | 35568s2 | \([0, 0, 0, -180111, -29394610]\) | \(3462397543530448/3602520441\) | \(672316774781184\) | \([2, 2]\) | \(184320\) | \(1.7627\) | |
35568.l4 | 35568s3 | \([0, 0, 0, -136371, -44030014]\) | \(-375718260235972/904469833683\) | \(-675183112965024768\) | \([4]\) | \(368640\) | \(2.1093\) | |
35568.l1 | 35568s4 | \([0, 0, 0, -224571, -13771366]\) | \(1677865892403172/861235747047\) | \(642909040227597312\) | \([2]\) | \(368640\) | \(2.1093\) |