Properties

Label 35568s
Number of curves $4$
Conductor $35568$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("s1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 35568s have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1\)
\(13\)\(1 + T\)
\(19\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 + T + 5 T^{2}\) 1.5.b
\(7\) \( 1 + 3 T + 7 T^{2}\) 1.7.d
\(11\) \( 1 + 11 T^{2}\) 1.11.a
\(17\) \( 1 + 6 T + 17 T^{2}\) 1.17.g
\(23\) \( 1 - 3 T + 23 T^{2}\) 1.23.ad
\(29\) \( 1 + 6 T + 29 T^{2}\) 1.29.g
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 35568s do not have complex multiplication.

Modular form 35568.2.a.s

Copy content sage:E.q_eigenform(10)
 
\(q - 2 q^{5} - 4 q^{11} + q^{13} + 6 q^{17} + q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.

Elliptic curves in class 35568s

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
35568.l3 35568s1 \([0, 0, 0, -180066, -29410045]\) \(55356847905445888/60021\) \(700084944\) \([2]\) \(92160\) \(1.4161\) \(\Gamma_0(N)\)-optimal
35568.l2 35568s2 \([0, 0, 0, -180111, -29394610]\) \(3462397543530448/3602520441\) \(672316774781184\) \([2, 2]\) \(184320\) \(1.7627\)  
35568.l4 35568s3 \([0, 0, 0, -136371, -44030014]\) \(-375718260235972/904469833683\) \(-675183112965024768\) \([4]\) \(368640\) \(2.1093\)  
35568.l1 35568s4 \([0, 0, 0, -224571, -13771366]\) \(1677865892403172/861235747047\) \(642909040227597312\) \([2]\) \(368640\) \(2.1093\)