Properties

Label 35550i
Number of curves $1$
Conductor $35550$
CM no
Rank $2$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("i1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 35550i1 has rank \(2\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 + T\)
\(3\)\(1\)
\(5\)\(1\)
\(79\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(7\) \( 1 + 2 T + 7 T^{2}\) 1.7.c
\(11\) \( 1 + 11 T^{2}\) 1.11.a
\(13\) \( 1 - T + 13 T^{2}\) 1.13.ab
\(17\) \( 1 - 3 T + 17 T^{2}\) 1.17.ad
\(19\) \( 1 + T + 19 T^{2}\) 1.19.b
\(23\) \( 1 - 6 T + 23 T^{2}\) 1.23.ag
\(29\) \( 1 + 9 T + 29 T^{2}\) 1.29.j
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 35550i do not have complex multiplication.

Modular form 35550.2.a.i

Copy content sage:E.q_eigenform(10)
 
\(q - q^{2} + q^{4} - 2 q^{7} - q^{8} + 2 q^{11} - 7 q^{13} + 2 q^{14} + q^{16} - 4 q^{17} + q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 35550i

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
35550.k1 35550i1 \([1, -1, 0, -792, 11866]\) \(-4826809/2370\) \(-26995781250\) \([]\) \(32256\) \(0.70691\) \(\Gamma_0(N)\)-optimal