Show commands: SageMath
Rank
The elliptic curves in class 35490bl have rank \(1\).
L-function data
Bad L-factors: |
| |||||||||||||||||||||
Good L-factors: |
| |||||||||||||||||||||
See L-function page for more information |
Complex multiplication
The elliptic curves in class 35490bl do not have complex multiplication.Modular form 35490.2.a.bl
Isogeny matrix
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)
Isogeny graph
The vertices are labelled with Cremona labels.
Elliptic curves in class 35490bl
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
35490.bp3 | 35490bl1 | \([1, 0, 1, -5060878, -4382567824]\) | \(2969894891179808929/22997520\) | \(111004636513680\) | \([2]\) | \(860160\) | \(2.2871\) | \(\Gamma_0(N)\)-optimal |
35490.bp2 | 35490bl2 | \([1, 0, 1, -5064258, -4376421632]\) | \(2975849362756797409/8263842596100\) | \(39887989817438844900\) | \([2, 2]\) | \(1720320\) | \(2.6337\) | |
35490.bp4 | 35490bl3 | \([1, 0, 1, -3064988, -7866347344]\) | \(-659704930833045889/5156082432978750\) | \(-24887425092243727308750\) | \([2]\) | \(3440640\) | \(2.9803\) | |
35490.bp1 | 35490bl4 | \([1, 0, 1, -7117608, -493126112]\) | \(8261629364934163009/4759323790524030\) | \(22972346906015502720270\) | \([2]\) | \(3440640\) | \(2.9803\) |