Properties

Label 35131.e
Number of curves $1$
Conductor $35131$
CM no
Rank $1$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("e1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 35131.e1 has rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(19\)\(1 + T\)
\(43\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(2\) \( 1 - T + 2 T^{2}\) 1.2.ab
\(3\) \( 1 + 2 T + 3 T^{2}\) 1.3.c
\(5\) \( 1 - 2 T + 5 T^{2}\) 1.5.ac
\(7\) \( 1 + 3 T + 7 T^{2}\) 1.7.d
\(11\) \( 1 - 3 T + 11 T^{2}\) 1.11.ad
\(13\) \( 1 + 2 T + 13 T^{2}\) 1.13.c
\(17\) \( 1 + 3 T + 17 T^{2}\) 1.17.d
\(23\) \( 1 + T + 23 T^{2}\) 1.23.b
\(29\) \( 1 + 29 T^{2}\) 1.29.a
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 35131.e do not have complex multiplication.

Modular form 35131.2.a.e

Copy content sage:E.q_eigenform(10)
 
\(q + q^{2} - 2 q^{3} - q^{4} + 2 q^{5} - 2 q^{6} - 3 q^{7} - 3 q^{8} + q^{9} + 2 q^{10} + 3 q^{11} + 2 q^{12} - 2 q^{13} - 3 q^{14} - 4 q^{15} - q^{16} - 3 q^{17} + q^{18} - q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 35131.e

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
35131.e1 35131a1 \([1, 0, 1, -172879690, 874896991611]\) \(-48888643731442873/6859\) \(-80169365704065259\) \([]\) \(2394756\) \(3.0971\) \(\Gamma_0(N)\)-optimal