Properties

Label 349022.f
Number of curves $4$
Conductor $349022$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("f1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 349022.f have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 - T\)
\(47\)\(1\)
\(79\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(3\) \( 1 + 3 T^{2}\) 1.3.a
\(5\) \( 1 + 2 T + 5 T^{2}\) 1.5.c
\(7\) \( 1 + 7 T^{2}\) 1.7.a
\(11\) \( 1 - 4 T + 11 T^{2}\) 1.11.ae
\(13\) \( 1 + 2 T + 13 T^{2}\) 1.13.c
\(17\) \( 1 + 6 T + 17 T^{2}\) 1.17.g
\(19\) \( 1 + 4 T + 19 T^{2}\) 1.19.e
\(23\) \( 1 - 4 T + 23 T^{2}\) 1.23.ae
\(29\) \( 1 + 2 T + 29 T^{2}\) 1.29.c
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 349022.f do not have complex multiplication.

Modular form 349022.2.a.f

Copy content sage:E.q_eigenform(10)
 
\(q + q^{2} + q^{4} - 2 q^{5} + q^{8} - 3 q^{9} - 2 q^{10} + 4 q^{11} - 2 q^{13} + q^{16} - 6 q^{17} - 3 q^{18} - 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 349022.f

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
349022.f1 349022f4 \([1, -1, 1, -1963111, -1049065663]\) \(77619515367393/770989598\) \(8310662893261147742\) \([2]\) \(6782976\) \(2.4491\)  
349022.f2 349022f2 \([1, -1, 1, -218001, 12659261]\) \(106294343553/55145476\) \(594424960224201604\) \([2, 2]\) \(3391488\) \(2.1025\)  
349022.f3 349022f1 \([1, -1, 1, -173821, 27910197]\) \(53881658433/59408\) \(640371624265232\) \([4]\) \(1695744\) \(1.7559\) \(\Gamma_0(N)\)-optimal
349022.f4 349022f3 \([1, -1, 1, 820229, 97794121]\) \(5661642220767/3661307614\) \(-39466023157013215006\) \([2]\) \(6782976\) \(2.4491\)