Properties

Label 348480qk
Number of curves $1$
Conductor $348480$
CM no
Rank $1$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("qk1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 348480qk1 has rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1\)
\(5\)\(1 - T\)
\(11\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(7\) \( 1 - 3 T + 7 T^{2}\) 1.7.ad
\(13\) \( 1 - 3 T + 13 T^{2}\) 1.13.ad
\(17\) \( 1 - T + 17 T^{2}\) 1.17.ab
\(19\) \( 1 + 5 T + 19 T^{2}\) 1.19.f
\(23\) \( 1 - 6 T + 23 T^{2}\) 1.23.ag
\(29\) \( 1 + T + 29 T^{2}\) 1.29.b
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 348480qk do not have complex multiplication.

Modular form 348480.2.a.qk

Copy content sage:E.q_eigenform(10)
 
\(q + q^{5} + 3 q^{7} + 3 q^{13} + q^{17} - 5 q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 348480qk

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
348480.qk1 348480qk1 \([0, 0, 0, -58952652, 172522750576]\) \(14934427706187/167772160\) \(254545288750676028948480\) \([]\) \(40550400\) \(3.3050\) \(\Gamma_0(N)\)-optimal