Properties

Label 346800hx
Number of curves $2$
Conductor $346800$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("hx1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 346800hx have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1 - T\)
\(5\)\(1\)
\(17\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(7\) \( 1 + T + 7 T^{2}\) 1.7.b
\(11\) \( 1 + 11 T^{2}\) 1.11.a
\(13\) \( 1 + 5 T + 13 T^{2}\) 1.13.f
\(19\) \( 1 - T + 19 T^{2}\) 1.19.ab
\(23\) \( 1 - 6 T + 23 T^{2}\) 1.23.ag
\(29\) \( 1 + 29 T^{2}\) 1.29.a
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 346800hx do not have complex multiplication.

Modular form 346800.2.a.hx

Copy content sage:E.q_eigenform(10)
 
\(q + q^{3} - q^{7} + q^{9} - 5 q^{13} + q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rr} 1 & 3 \\ 3 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.

Elliptic curves in class 346800hx

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
346800.hx1 346800hx1 \([0, 1, 0, -12610033, -17241623062]\) \(-127157223424/16875\) \(-29428976704218750000\) \([]\) \(12690432\) \(2.7553\) \(\Gamma_0(N)\)-optimal
346800.hx2 346800hx2 \([0, 1, 0, 2128967, -54361794562]\) \(611926016/732421875\) \(-1277299336120605468750000\) \([]\) \(38071296\) \(3.3046\)