Properties

Label 346560ix
Number of curves $2$
Conductor $346560$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("ix1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 346560ix have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1 - T\)
\(5\)\(1 - T\)
\(19\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(7\) \( 1 + 2 T + 7 T^{2}\) 1.7.c
\(11\) \( 1 + 6 T + 11 T^{2}\) 1.11.g
\(13\) \( 1 + 13 T^{2}\) 1.13.a
\(17\) \( 1 - 2 T + 17 T^{2}\) 1.17.ac
\(23\) \( 1 + 4 T + 23 T^{2}\) 1.23.e
\(29\) \( 1 + 8 T + 29 T^{2}\) 1.29.i
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 346560ix do not have complex multiplication.

Modular form 346560.2.a.ix

Copy content sage:E.q_eigenform(10)
 
\(q + q^{3} + q^{5} - 2 q^{7} + q^{9} - 6 q^{11} + q^{15} + 2 q^{17} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.

Elliptic curves in class 346560ix

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
346560.ix2 346560ix1 \([0, 1, 0, -2276225, 1449540735]\) \(-105756712489/12476160\) \(-153865929017775882240\) \([2]\) \(13271040\) \(2.6094\) \(\Gamma_0(N)\)-optimal
346560.ix1 346560ix2 \([0, 1, 0, -37394305, 88001560703]\) \(468898230633769/5540400\) \(68328619794078105600\) \([2]\) \(26542080\) \(2.9559\)