Show commands: SageMath
Rank
The elliptic curves in class 34650.f have rank \(0\).
L-function data
| Bad L-factors: |
| |||||||||||||||||||||
| Good L-factors: |
| |||||||||||||||||||||
| See L-function page for more information | ||||||||||||||||||||||
Complex multiplication
The elliptic curves in class 34650.f do not have complex multiplication.Modular form 34650.2.a.f
Isogeny matrix
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rrrr} 1 & 2 & 3 & 6 \\ 2 & 1 & 6 & 3 \\ 3 & 6 & 1 & 2 \\ 6 & 3 & 2 & 1 \end{array}\right)\)
Isogeny graph
The vertices are labelled with LMFDB labels.
Elliptic curves in class 34650.f
| LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
|---|---|---|---|---|---|---|---|---|
| 34650.f1 | 34650l3 | \([1, -1, 0, -2095542, 1155488116]\) | \(89343998142858649/1112702976000\) | \(12674382336000000000\) | \([2]\) | \(995328\) | \(2.4752\) | |
| 34650.f2 | 34650l4 | \([1, -1, 0, -367542, 3002720116]\) | \(-482056280171929/341652696000000\) | \(-3891637740375000000000\) | \([2]\) | \(1990656\) | \(2.8218\) | |
| 34650.f3 | 34650l1 | \([1, -1, 0, -202167, -34108259]\) | \(80224711835689/2173469760\) | \(24757178985000000\) | \([2]\) | \(331776\) | \(1.9259\) | \(\Gamma_0(N)\)-optimal |
| 34650.f4 | 34650l2 | \([1, -1, 0, 40833, -111139259]\) | \(661003929431/468755040600\) | \(-5339412884334375000\) | \([2]\) | \(663552\) | \(2.2725\) |